## Affiliated to

## DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW



## Evaluation Scheme \& Syllabus

For

## B. Tech in Mechanical Engineering (ME) First Year

(Effective from the Session: 2020-21)

## NOIDA INSTITUTE OF ENGINEERING \& TECHNOLOGY, GREATER NOIDA <br> (An Autonomous Institute)

## B. TECH (ME)

## Evaluation Scheme

SEMESTER I

| $\begin{aligned} & \text { Sl. } \\ & \text { No } \end{aligned}$ | Subject Codes | Subject | Periods |  |  | Evaluation Schemes |  |  |  | $\begin{gathered} \text { End } \\ \text { Semeste } \end{gathered}$$\mathbf{r}$ |  | Tota I | Credit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | L | T | P | $\begin{aligned} & \mathrm{C} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathbf{T} \\ & \mathbf{A} \end{aligned}$ | $\underset{\mathrm{L}}{\text { TOTA }}$ | PS | $\begin{aligned} & \mathbf{T} \\ & \mathbf{E} \end{aligned}$ | PE |  |  |
| 3 WEEKS COMPULSORY INDUCTION PROGRAM |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | AAS0103 | Engineering Mathematics- $1$ | 3 | 1 | 0 | 30 | 20 | 50 |  | 100 |  | 150 | 4 |
| 2 | AAS0102 | Engineering Chemistry | 3 | 1 | 0 | 30 | 20 | 50 |  | 100 |  | 150 | 4 |
| 3 | ACSE0101 | Problem Solving using Python | 3 | 0 | 0 | 30 | 20 | 50 |  | 100 |  | 150 | 3 |
| 4 | AASL0101 | Professional Communication | 2 | 0 | 0 | 30 | 20 | 50 |  | 100 |  | 150 | 2 |
| 5 | AAS0152 | Engineering Chemistry Lab | 0 | 0 | 2 |  |  |  | 25 |  | 25 | 50 | 1 |
| 6 | ACSE0151 | Problem Solving using Python Lab | 0 | 0 | 2 |  |  |  | 25 |  | 25 | 50 | 1 |
| 7 | AASL0151 | Professional Communication Lab | 0 | 0 | 2 |  |  |  | 25 |  | 25 | 50 | 1 |
| 8 | AME0151 | Digital Manufacturing Practices | 0 | 0 | 3 |  |  |  | 25 |  | 25 | 50 | 1.5 |
|  |  | MOOCs (For B.Tech. Hons. Degree) |  |  |  |  |  |  |  |  |  |  |  |
|  |  | TOTAL |  |  |  |  |  |  |  |  |  | 800 | 17.5 |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

## NOIDA INSTITUTE OF ENGINEERING \& TECHNOLOGY, GREATER NOIDA (An Autonomous Institute)

## B. TECH (ME) <br> Evaluation Scheme <br> SEMESTER II

| $\begin{aligned} & \text { Sl. } \\ & \text { No. } \end{aligned}$ | Subject Codes | Subject | Periods |  |  | Evaluation Schemes |  |  |  | $\begin{gathered} \text { End } \\ \text { Semeste } \end{gathered}$ |  | $\begin{gathered} \text { Tot } \\ \text { al } \end{gathered}$ | $\underset{t}{\text { Credi }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | L | T | P | $\begin{aligned} & \mathbf{C} \\ & \mathbf{T} \end{aligned}$ | $\begin{aligned} & \mathbf{T} \\ & \mathbf{A} \end{aligned}$ | $\underset{L}{\text { TOTA }}$ | PS | TE | $\begin{aligned} & \hline \mathbf{P} \\ & \mathbf{E} \end{aligned}$ |  |  |
| 1 | AAS0203 | Engineering Mathematics-II | 3 | 1 | 0 | 30 | 20 | 50 |  | 100 |  | 150 | 4 |
| 2 | $\begin{gathered} \text { AASO201 } \\ \text { B } \end{gathered}$ | Engineering Physics | 3 | 1 | 0 | 30 | 20 | 50 |  | 100 |  | 150 | 4 |
| 3 | ACSE0201 | Programming for Problem Solving using C | 3 | 0 | 0 | 30 | 20 | 50 |  | 100 |  | 150 | 3 |
| 4 | AEC0201 | Basic Electrical and Electronics Engineering. | 3 | 1 | 0 | 30 | 20 | 50 |  | 100 |  | 150 | 4 |
| 5 |  | Foreign Language* | 2 | 0 | 0 | 30 | 20 | 50 |  | 50 |  | 100 | 2 |
| 6 | $\begin{gathered} \text { AASO251 } \\ \text { B } \end{gathered}$ | Engineering Physics Lab | 0 | 0 | 2 |  |  |  | 25 |  | 25 | 50 | 1 |
| 7 | AEC0251 | Basic Electrical and Electronics Engineering Lab | 0 | 0 | 2 |  |  |  | 25 |  | 25 | 50 | 1 |
| 8 | ACSE0251 | Programming for Problem Solving using C Lab | 0 | 0 | 2 |  |  |  | 25 |  | 25 | 50 | 1 |
| 9 | AME0252 | Engineering Graphics \& Solid Modelling | 0 | 0 | 3 |  |  |  | 25 |  | 25 | 50 | 1.5 |
|  |  | MOOCs (For B.Tech. Hons. Degree) |  |  |  |  |  |  |  |  |  |  |  |
|  |  | TOTAL |  |  |  |  |  |  |  |  |  | 900 | 21.5 |

Mini Project or Internship (3-4 weeks) shall be conducted during summer break after II semester and will be assessed during III semester

* List of MOOCs (NPTL) Based Recommended Courses for first year B. Tech Students

1. Developing Soft Skills and personality-Odd Semester-8 Weeks-3 Credits
2. Enhancing Soft Skills and personality-Even Semester-8 Weeks-3 Credits

* AICTE Guidelines in Model Curriculum:

After successful completion of 160 credits, a student shall be eligible to get Under Graduate degree in Engineering. A student will be eligible to get Under Graduate degree with Honours only, if he/she completes additional university recommended courses only (Equivalent to 20 credits; NPTEL Courses of 4 Weeks, 8 Weeks and 12 Weeks shall be of 2, 3 and 4 Credits respectively) through MOOCs. For registration to MOOCs Courses, the students shall follow NPTEL Site http://nptel.ac.in/ as per the NPTEL policy and norms. The students can register for these courses through NPTEL directly as per the course offering in Odd/Even Semesters at NPTEL. These NPTEL courses (recommended by the University) may be cleared during the B. Tech degree program (not necessary one course in each semester). After successful completion of these MooCs courses the students, shall, provide their successful completion NPTEL status/certificates to the University (COE) through their college of study only. The student shall

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.
be awarded Hons. Degree (on successful completion of MOOCS based 20 credit) only if he/she secures 7.50 or above CGPA and passed each subject of that Degree Programme in single attempt without any grace marks.

## *Foreign Language :

1. AASLO202 French
2. AASLO203 German
3. AASLO204 Japanese


L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| CO 4 | Apply the concept of multiple integral to find area, volume, centre of mass and centre of gravity. | $\mathrm{K}_{3}$ |
| :---: | :---: | :---: |
| CO 5 | Solve the problems of Profit, Loss, Number \& Series, Coding \& decoding. | $\mathrm{K}_{3}$ |
| Text books |  |  |
| (1) B. V. Ramana, Higher Engineering Mathematics, Tata Mc Graw-Hill Publishing Company Ltd.. |  |  |
| (2) B. S. Grewal, Higher Engineering Mathematics, Khanna Publisher. |  |  |
| (3) R K. Jain \& S R K. Iyenger, Advance Engineering Mathematics, Narosa Publishing House . |  |  |
| Reference Books: |  |  |
| (1) E. Kreyszig, Advance Engineering Mathematics, John Wiley \& Sons. |  |  |
| (2) Peter V. O'Neil, Advance Engineering Mathematics, Thomson (Cengage) Learning. |  |  |
| (3) Maurice D. Weir, Joel Hass, Frank R. Giordano, Thomas, Calculus, Eleventh Edition, Pearson. |  |  |
| (4) D. Poole, Linear Algebra : A Modern Introduction, 2nd Edition, Brooks/Cole. |  |  |
| (5) Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi. |  |  |
| (6) Ray Wylie C and Louis C Barret, Advanced Engineering Mathematics, Tata Mc-Graw-Hill; Sixth Edition. |  |  |
| (7) P. Sivaramakrishna Das and C. Vijayakumari, Engineering Mathematics, 1st Edition, Pearson India Education Services Pvt. Ltd |  |  |
| (8) Advanced Engineering Mathematics. Chandrika Prasad, ReenaGarg. |  |  |
| (9) Engineering Mathemathics - I. ReenaGarg. |  |  |
| (10) Quantitative Aptitude by R.S. Aggrawal. |  |  |
| Link: |  |  |
| Unit 1 | https://www.youtube.com/watch?v=kcL5WWJjmIU <br> https://www.youtube.com/watch?v=VTHz4gjzsKI <br> https://youtu.be/56dEt9EOZ M <br> https://www.youtube.com/watch?v=njDiwB43w80 <br> https://www.youtube.com/watch?v=N33SOw1A5fo <br> https://www.youtube.com/watch? v=yLi8RxqfowA <br> www.math.ku.edu/~lerner/LAnotes/Chapter5.pdf <br> http://www.math.hawaii.edu/~lee/linear/sys-eq.pdf <br> https://youtu.be/41Y38WjHbtE <br> https://www.youtube.com/watch?v=4jcvZmMK_28 <br> https://www.youtube.com/watch?v=G4N8vJpf7hM <br> https://www.youtube.com/watch?v=r5dIXpssvrA <br> https://youtu.be/ZX5YnDMzwbs <br> http://web.mit.edu/2.151/www/Handouts/CayleyHamilton.pdf <br> https://www.youtube.com/watch? $\mathrm{v}=\mathrm{iKQESPLDnnI}$ <br> https://math.okstate.edu/people/binegar/3013-S99/3013-116.pdf <br> https://www.youtube.com/watch?v=kGdezES-bDU |  |
| Unit 2 | https://www.youtube.com/watch? <br> $\mathrm{v}=\mathrm{tQxk} 5$ IX9S 8\&list=PLbu fGT0MPstS3DTIyqkUecSW 7axdxKe |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

|  | https://www.youtube.com/watch?v=U5sGFf0DjLs\&t=34s <br> https://www.youtube.com/watch?v=TCPPvRfHtXw <br> https://www.youtube.com/watch? <br> $\mathrm{v}=\mathrm{PkuPGKSacu0} \mathrm{\& list=PL2FUpm=Ld1Q3H00wVFuwjWOo1gtMXk1eb}$ <br> https://www.youtube.com/watch? $\mathrm{v}=\mathrm{QeWrQ} 9 \mathrm{Fz} 3 \mathrm{Wo}$ \&t=22s <br> https://www.youtube.com/watch?v=5dFrWCE6bHg <br> https://www.youtube.com/watch?v=WX609TiFYsA\&t=110s <br> https://www.youtube.com/watch? <br> $\mathrm{v}=\mathrm{GII1} 1 \mathrm{ssdR} 2 \mathrm{cg} \& \mathrm{list}=\mathrm{PLhSp9OSVmeyK2yt8hdoo3Qze3O0Y67qaY}$ |
| :---: | :---: |
| Unit 3 | https://www.youtube.com/watch?v=6tQTRlbkbc8 <br> https://www.youtube.com/watch?v=McT-UsFx1Es <br> https://www.youtube.com/watch?v=1TNtFqiFQo <br> https://www.youtube.com/watch?v=X6kp2o3mGtA <br> https://www.youtube.com/watch?v=btLWNJdHzSQ <br> https://www.youtube.com/watch?v=jiEaKYIOATY <br> https://www.youtube.com/watch?v=r61DwJZmfGA <br> https://www.youtube.com/watch?v=Jk9xMY4mPH8 <br> https://www.youtube.com/watch?v=fqq UR4zhfI <br> https://www.youtube.com/watch?v=G0V_yp0jz5c <br> https://www.youtube.com/watch?v=9-tir2V3vYY <br> https://www.youtube.com/watch?v=jGwA4hknYp4 |
| Unit 4 | https://www.youtube.com/watch?v=3BbrC9JcjOU <br> https://www.youtube.com/watch?v=-DduB46CoZY <br> https://www.youtube.com/watch?v=VvKAuFBJLs0 <br> https://www.youtube.com/watch?v=4rc3w1sGoNU <br> https://www.youtube.com/watch? $\mathrm{v}=\mathrm{X} 6 \mathrm{kp} 203 \mathrm{mGtA} \& \mathrm{t}=1003 \mathrm{~s}$ <br> https://www.youtube.com/watch?v=wtY5fx6VMGQ\&t=1151s <br> https://www.youtube.com/watch?v=-I3HUeHi1Ys\&t=1933s <br> https://www.youtube.com/watch?v=kfv9h3c46CI <br> https://www.youtube.com/watch?v=9 m36W3cK74 <br> https://www.youtube.com/watch?v=HQM7XMd5QQo <br> - https://www.GovernmentAdda.com |
| Unit 5 | https://www.GovernmentAdda.com |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.


| Polymers (Bakelite, Melamine: Urea-Formaldehyde Resins), Elastomers (Natural rubber and its <br> vulcanization, Buna N, Buna S, Neoprene), synthetic Fibers (Nylon6, Nylon 6,6, Terylene). |  |  |
| :--- | :--- | :--- |
| UNIT-V | SPECTROSCOPIC TECHNIQUE AND ADVANCE METERIALS | 9 hours |
| Point defects in Crystals. Structure, applications of Fullerenes, Semiconductor Materials, Basic <br> Concept of Smart materials, Concepts of Nano-Materials and its applications. <br> Elementary ideas and simple applications of UV- Visible, IR and Raman spectral Techniques |  |  |
| Course outcome: |  |  |
| CO 1 | Understand the concept of fuel, their calorific value and it's usage |  |
| CO 2 | Develop the understanding to apply the principles of water chemistry to the water <br> treatment |  |
| CO 3 | Apply concepts of Electrochemistry, corrosion and their prevention methods with cement <br> manufacturing |  |
| CO 4 | Understand elementary preparation and application of polymers and Organometallic <br> compounds. |  |
| CO 5 | Understand Molecular orbital theory and simplified concepts of spectroscopic techniques |  |
| Text books | 1. Chemistry for Engineers, by S. Vairam and Suba Ramesh; Wiley India <br> 2. Engineering Chemistry by Sunita rattan; Ketson Publications <br> 3. Engineering Chemistry, by E.R. Nagarajan; Wiley India <br> 4. Concise Inorganic Chemistry by J.D. Lee; Wiley India |  |
| Reference Books |  |  |
| 1. Textbook of Engineering Chemistry by Dr. Gopal Krishna Bhatt, Acme Publishers |  |  |
| 2. Chemistry (9th ed), by Raymond Chang, Tata McGraw-Hill |  |  |
| 3. Chemistry Concepts and Applications by Steven S. Zumdahl; Cengage Learning |  |  |
| 4. Engineering Chemistry Author: Abhijit Mallick, Viva Books |  |  |
| 5. Text Book of Engineering Chemistry by Harsh Malhotra; Sonali Publications |  |  |
| 6. Organic Chemistry (6 ed) by Morrison \& Boyd; Pearson Education |  |  |
| 7. Physical Chemistry by Gordon M. Barrow; Mc-Graw Hill |  |  |
| 8. Organic Chemistry, Volume 1(6 ed)\& 2 (5ed) by I. L. Finar; Pearson Education |  |  |
| 9. Atkins' Physical Chemistry by Peter Atkins \& Julio De Paula; Oxford University Press |  |  |

## B. TECH FIRST YEAR

| Course Code | ACSE0101 | L | T | P | Credit |
| :--- | :--- | :--- | :--- | :--- | :--- |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.


L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| CO 1 | Write simple python programs. | $K_{2,}, K_{3}$ |
| :---: | :---: | :---: |
| CO 2 | Develop python programs usingdecision control statements | $K_{3}, K_{6}$ |
| CO 3 | Implement user defined functions and modules in python | K |
| CO 4 | Implement python data structures -lists, tuples, set, dictionaries | $K_{3}$ |
| CO 5 | Perform input/output operations with files in python and implement searching, sorting and merging algorithms | $K_{3}, K_{4}$ |
| Text books |  |  |
| (1) Magnus Lie Hetland, "Beginning Python-From Novice to Professional"--Third Edition, Apress |  |  |
| (2) Python Programming using Problem solving approach by ReemaThareja OXFORD Higher education |  |  |
| (3) Kenneth A. Lambert, -Fundamentals of Python: First Programs, CENGAGE Learning, 2012. |  |  |
| Reference Books |  |  |
| (1) John V Guttag, —Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press, 2013 |  |  |
| (2) Charles Dierbach, —Introduction to Computer Science using Python: A Computational Problem Solving Focus, Wiley India Edition, 2013. |  |  |
| (3) Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O 'Reilly Publishers, 2016 |  |  |
| (4) Robert Sedgewick, Kevin Wayne, Robert Dondero: Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd.,2016. |  |  |
| (5) Timothy A. Budd, —Exploring Pythonll, Mc-Graw Hill Education (India) Private Ltd.,2015. |  |  |
| (6) Guido van Rossum and Fred L. Drake Jr, 一An Introduction to Python - Revised and updated for Python 3.2, Network Theory Ltd., 2011. |  |  |
| E-book and E-Content |  |  |
| (1) https://www.pdfdrive.com/hacking-hacking-practical-guide-for-beginners-hacking-with-pythne182434771.html |  |  |
| (2) https://www.pdfdrive.com/python-programming-python-programming-for-beginners- python-programming-for-intermediates-e180663309.html |  |  |
| (3)https://www.pdfdrive.com/python-algorithms-mastering-basic-algorithms-in-the-python-languagee175246184.html |  |  |
| (4) https://www.pdfdrive.com/python-algorithms-mastering-basic-algorithms-in-the-python-language-e160968277.html |  |  |
| (5) https://docs.python.ora/3/library/index.html |  |  |
| (6) https://www.w3schools.com/python/ |  |  |
| (7) https://www.py4e.com/materials |  |  |
| Reference Links |  |  |
| Unit-1 https://nptel.ac.in/courses/106/106/106106182/ |  |  |
| Unit-2 https://nptel.ac.in/courses/106/106/106106212/ |  |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.


## B. TECH FIRST YEAR

| Course Code | AASL0101 | L T P | Credit |
| :--- | :--- | :--- | :---: |
| Course Title | Professional Communication | $\mathbf{2} \mathbf{0} 0$ | $\mathbf{2}$ |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

|  |  |  |  |
| :---: | :---: | :--- | :--- |
| Course objective: |  | The objective of the course is to ensure that the students can communicate <br> effectively, in clear and correct English, in a style appropriate to the occasion. |  |
| 1 | The course provides a foundation in the four basic skills LSRW (Listening, <br> Speaking, Reading,Writing) of language learning, aligned to an International <br> Business English Certification. |  |  |
| 2 |  |  |  |

## Pre-requisites:

- The student should be able to communicate in basic English and have control over simple grammatical structures of English.
- All the students must take an assessment exam to ascertain their level of skill in English and undergo a brief induction course in it.


## Course Contents / Syllabus

| UNIT-I | Introduction \& Reading Skills | 7 Hours |
| :--- | :--- | :--- |

$>$ Introduction to ESP
$>$ Reading basics (skimming, scanning, churning, \& assimilation)
$>$ Reading comprehension
$>$ Reading texts for paraphrasing \& note making; diagram, chart, picture reading
$>$ Critical reading of texts through suggested list of books

| UNIT-II | Writing Skills | $\mathbf{1 0}$ Hours |
| :--- | :--- | :--- |

$>$ Vocabulary building - word formation; root words, prefixes \&suffixes; synonyms; antonyms; homophones; abbreviations; one-word substitutes
$>$ Requisites of a good sentence
$>$ Common errors - subject-verb agreement and concord, tenses, articles, preposition; punctuation
$>$ Paragraph writing
$>$ Basics of letter \&email writing; notice \& memo writing

| UNIT-III | Listening Skills | $\mathbf{5}$ Hours |
| :--- | :--- | ---: |
| $>$ Process of listening |  |  |
| $>$ Types of listening |  |  |
| $>$ Overcoming barriers to listening |  |  |
| $>$ Tips for effective listening |  |  |
| $\quad>$ Exercises on listening skills | Speaking Skills | $\mathbf{8 ~ H o u r s}$ |
| UNIT-IV | Sper |  |

$>$ Skills of effective speaking
$>$ Applied phonetics - phoneme, syllable, word accent
$>$ Stress, rhythm\& intonation in English
$>$ Neutral accent - difficulties of non-native speakers of English
$>$ Speaking with confidence
UNIT-V
Public Speaking
10 Hours
$>$ Components of effective speaking in the workplace
$>$ Public speaking - Kinesics, Chronemics, Proxemics
$>$ Voice dynamics
$>$ Basics of Presentation, PPT support
L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| $>$ Online Presentations \& Etiquette <br> $>$ Facing an Interview |  |
| :---: | :---: |
| Course outcome: |  |
| At the end of the course students will be able to |  |
| CO 1 | Understand the basic object reading tasks in preparation |
| CO 2 | Write professionally in simpl |
| CO 3 | Interpret listening tasks for b |
| CO 4 | Recognize the elements of ef |
| CO 5 | Apply the skill of speaking a |
| Text books |  |
| 1. Cambridge English Business Benchmark (Pre-intermediate to Intermediate), 2nd edition, Norman Whitby, Cambridge University Press, 2006, UK. |  |
| 2. Improve Your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, 2001, New Delhi. |  |
| 3. Technical Communication - Principles and Practices by Meenakshi Raman \&Sangeeta Sharma, Oxford Univ. Press, 2016, New Delhi. |  |
| Reference Books |  |
| 1. Talbot, Fiona. Improve Your Global Business English Kogan Page, 2012. |  |
| 2. Leech Geoffrey.Communicative Grammar ofEnglishPearsonEducationHarlow, United Kingdom, 1994. |  |
| 3. Sethi J. Course in Phonetics and Spoken EnglishPrentice Hall India Learning Private Limited; 2 edition (1999) |  |
| 4. Rebecca Corfield. Preparing the Perfect CV. Kogan Page Publishers, 2009. |  |
| 5. Anderson, Paul V. Technical communication. 8th ed. Cengage Learning, 2011. |  |
| 6. IELTS 11: General Training with answers. Cambridge English |  |


| B. TECH FIRST YEAR |  |  |  |
| :--- | :--- | :--- | :---: |
| Course Code | AAS0152 | L T P | Credit |
| Course Title | Engineering Chemistry Lab | $\mathbf{0}$ 0 2 | 1 |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| Suggested list of Experiment |  |  |
| :---: | :---: | :---: |
| Sr. No. | Name of Experiment |  |
| 1 | Determination of alkalinity in the given water sample. |  |
| 2 | Determination of temporary and permanent hardness in water sample using EDTA. |  |
| 3 | Determination of available chlorine in bleaching powder. |  |
| 4 | Determination of chloride content in water sample by Mohr's method. |  |
| 5 | Determination of iron content in the given solution. |  |
| 6 | Verification of Beers Law using colored complex solution. |  |
| 7 | Standardization of an alkali solution through an standard acid by pH -metric titration |  |
| 8 | Viscosity of an addition polymer like polyester by viscometer. |  |
| 9 | Determination of iron concentration in sample of water by Colorimetric Method |  |
| 10 | Determination of Flash Point of given fuel sample. |  |
| 11 | Preparation of Bakelite and Urea formaldehyde resin. |  |
| 12 | Determination of Hardness by conductivity method. |  |
| Lab Course Outcome: After completion of this course the student will be able to: |  |  |
| CO 1 | Use different analytical instruments. |  |
| CO 2 | Calculate molecular/system properties such as surface tension, viscosity, conductance of solution, chloride and iron content in water |  |
| CO 3 | Calculate flash point of fuel and lubricants |  |
| CO 4 | Estimate the rate constant of reaction. |  |
| Link: |  |  |
| Unit 1 |  | https://nptel.a |
| Unit 2 |  | http://ecourse |
| Unit 3 |  | https://nptel. https://nptel. |
| Unit 4 |  | https://nptel.ac |
| Unit 5 |  | https://unacad |

## B. TECH FIRST YEAR

| Lab Code | ACSE0151 | L T P | Credit |
| :--- | :--- | :--- | :---: |
| Lab Title | Problem Solving using Python Lab | $\mathbf{0}$ | $\mathbf{0}$ |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| Course outcome: At the end of course, the student will be able to |  |  |  |
| :--- | :--- | :--- | :---: |
| CO 1 | Write simple python programs. | $\mathrm{K}_{2}, \mathrm{~K}_{3}$ |  |
| CO 2 | Implement python programs usingdecision control statements | $\mathrm{K}_{3}, \mathrm{~K}_{6}$ |  |
| CO 3 | Writing python programs using user defined functions and modules | $\mathrm{K}_{2}$ |  |
| CO 4 | Implement programs using python data structures -lists, tuples, set, <br> dictionaries | $\mathrm{K}_{3}$ |  |
| CO 5 | Write programs to perform input/output operations on files | $\mathrm{K}_{3}, \mathrm{~K}_{4}$ |  |

## List of Experiment:

| List of Fundamental Programs |  |  |
| :---: | :--- | :--- |
| S.N. | Program Title | Category |
| 1 | Python Program to print "Hello Python" | Basic |
| 2 | Python Program to read and print values of variables of different data types. | Basic |
| 3 | Python Program to perform arithmetic operations on two integer numbers | Basic |
| 4 | Python Program to Swap two numbers | Basic |
| 5 | Python Program to convert degree Fahrenheit into degree Celsius | Operators |
| 6 | Python Program to demonstrate the use of relational operators. | Operators |
| 7 | Python Program to understand the working of bitwise and logical operators. | Operators |
| 8 | Python Program to calculate roots of a quadratic equation. | Conditional |
| 9 | Python Program to check whether a year is leap year or not. | Conditional |
| 10 | Python Program to find smallest number among three numbers. | Conditional |
| 11 | Python Program to make a simple calculator. | Conditional |
| 12 | Python Program to find the factorial of an integer number. | Loop |
| 13 | Python Program to find the reverse of an integer number. | Loop |
| 14 | Python Program to find and print all prime numbers in a list. | Loop |
| 15 | Python Program to Find the Sum of 'n' Natural Numbers | Loop |
| 16 | Python Program to print sum of series: - 1/2 + 2/3+ 3/4 + .... $+\mathrm{n} /(\mathrm{n}+1)$ | Loop |
| 17 | Python Program to print pattern using nested loop | Loop |
| 18 | Python Program to Display the multiplication Table of an Integer | Loop |
| 19 | Python Program to Print the Fibonacci sequence | Loop |
| 20 | Python Program to Check Armstrong Number | Loop |
| 21 | Python Program to Find Armstrong Number in an Interval | Loop |
| 22 | Python Program to check Using function whether a passed string is <br> palindrome or not | Function |
| 23 | Python Program using function that takes a number as a parameter, check <br> whether the number is prime or not. | Function |
| 24 | PythonProgram using function that computes gcd of two given numbers. | Function |
| 25 | Python Program to Find LCM of two or more given numbers. | Function |
| 26 | Python Program to Convert Decimal to Binary, Octal and Hexadecimal | Function |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| 27 | Python Program To Find ASCII value of a character | Basic |
| :---: | :---: | :---: |
| 28 | Python Program to Display Calendar | Loop |
| 29 | Python Program to Add Two Matrices | Loop |
| 30 | Python Program to Multiply Two Matrices | Loop |
| 31 | Python Program to Transpose a Matrix | Loop |
| 32 | Python Program to Sort Words in Alphabetic Order | Sorting |
| 33 | Python Program to Display Fibonacci Sequence Using Recursion | Recursion |
| 34 | Python Program to Find Factorial of Number Using Recursion | Recursion |
| 35 | Python Program that implements different string methods. | String |
| 36 | Python Program that validates given mobile number. Number should start with 7, 8 or 9 followed by 9 digits. | String |
| 37 | Python Program to implement various methods of a list. | List |
| 38 | Python Program that has a nested list to store toppers details. Edit the details and reprint them. | List |
| 39 | Python Program to swap two values using tuple assignment. | Tuple |
| 40 | Python Program that has a set of words in English language and their corresponding Hindi words. Define dictionary that has a list of words in Hindi language and their corresponding Hindi Sanskrit. Take all words from English language and display their meaning in both languages. | Dictionary |
| 41 | Python Program that inverts a dictionary. | Dictionary |
| 42 | Python Program that reads data from a file and calculates percentage of white spaces, lines, tabs, vowels and consonants in that file. | File |
| 43 | Python Program that fetches data from a given url and write it in a file. | File |
| 44 | Python Program to understand the concept of Exception Handling | Exception Handling |
| 45 | Python Program to implement linear and binary search | Searching |
| 46 | Python Program to sort a set of given numbers using Bubble sort | Sorting |
| S.No. | Word Problem Experiments |  |
| 1. | String Rotation <br> Problem Description <br> Rotate a given String in the specified direction by specified magnitude. <br> After each rotation make a note of the first character of the rotated String, after all rotation are performed the accumulated first character as noted previously will form another string, say FIRSTCHARSTRING. <br> Check If FIRSTCHARSTRING is an Anagram of any substring of the Original string. <br> If yes print "YES" otherwise "NO". Input <br> The first line contains the original string $s$. The second line contains a single integer $q$. The ith of the next q lines contains character $\mathrm{d}[\mathrm{i}]$ denoting direction and integer $\mathrm{r}[\mathrm{i}]$ denoting the magnitude. <br> Constraints |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

|  | ```\(1<=\) Length of original string \(<=30\) \(1<=\mathrm{q}<=10\) \\ Output \\ YES or NO \\ Explanation \\ Example 1 \\ Input \\ carrace \\ 3 \\ L 2 \\ R 2 \\ L 3 \\ Output \\ NO \\ Explanation``` <br> After applying all the rotations, the FIRSTCHARSTRING string will be "rcr" which is not anagram of any sub string of original string "carrace". <br> Jurassic Park <br> Problem Description <br> Smilodon is a ferocious animal which used to live during the Pleistocene epoch (2.5 mya10,000 years ago). Scientists successfully created few smilodons in an experimental DNA research. A park is established and those smilodons are kept in a cage for visitors. <br> This park consists of Grasslands(G), Mountains(M) and Waterbodies(W) and it has three gates (situated in grasslands only). Below is a sample layout. <br> Before opening the park, club authority decides to calculate Safety index of the park. The procedure of the calculation is described below. Please help them to calculate. <br> Safety Index calculation <br> Assume a person stands on grassland( x ) and a Smilodon escapes from the cage situated on grassland(y). If the person can escape from any of those three gates before the Smilodon able to catch him, then the grassland( x ) is called safe else it is unsafe. A person and a Smilodon both take 1 second to move from one area to another adjacent area(top, bottom, left or right) but a person can move only over grasslands though Smilodon can move over grasslands and mountains. <br> If any grassland is unreachable for Smilodon(maybe it is unreachable for any person also), to increase safe index value Club Authority use to mark those grasslands as safe land. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2. |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.


L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.



L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.
$\left.\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { contains M, the number of solutions. The M subsequent lines consist of a sequence of } \\ \text { letters corresponding to a solution for one of the Across and Down clues. All solutions will } \\ \text { be in upper case (Capital letters) } \\ \text { Output } \\ \text { The output is a set of M comma separated lines. Each line corresponds to a solution, and } \\ \text { consists of three parts, the clue number, the letter A or D (corresponding to Across or } \\ \text { Down) and the solution in to that clue (in upper case) } \\ \text { The output must be in increasing clue number order. Ifa clue number has both an Across } \\ \text { and a Down solution, they must come in separate lines, with the Across solution coming } \\ \text { before the Down solution. } \\ \text { Explanation } \\ \text { Example 1 } \\ \text { Input } \\ 5 \\ 5,1 \\ 1,1,3,1,5,1 \\ 0,0 \\ 1,1,3,1,5,1 \\ 1,1 \\ 5\end{array} \\ \text { EVEN } \\ \text { ACNE } \\ \text { CALVE } \\ \text { PLEAS } \\ \text { EVADE } \\ \text { O. } \\ \text { Output } \\ 1, A, A C N E ~ \\ 2, D, C A L V E ~ \\ 3, D, E V A D E \\ 4, A, P L E A S \\ 5, A, E V E N\end{array} \right\rvert\, \begin{array}{l}\text { Skateboard } \\ \text { Problem Description } \\ \text { The amusement park at Patagonia has introduced a new skateboard competition. The } \\ \text { skating surface is a grid of N x N squares. Most squares are so constructed with slopes that } \\ \text { it is possible to direct the skateboard in any of up to three directions of the possible four } \\ \text { (North ,East, South or West, represented by the letters N, E, S and W respectively). Some } \\ \text { squares however have a deep drop from the adjacent square from which it is impossible to } \\ \text { go to any adjacent square. These are represented by D (for Drop) in that square. The } \\ \text { objective is to maneuver the skateboard to reach the South East corner of the grid, marked }\end{array}\right\}$

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

|  | F. <br> Each contestant is given a map of the grid, which shows where the Drop squares are (marked D), where the Final destination is (marked F), and, for each other square, the directions it is possible to maneuver the skateboard in that square. <br> The contestant draws lots to determine which of the squares on the boundaries of the grid on the North or the West of the grid (the top or the left in the diagram) he or she should start in. Then, using a map of the grid, he or she needs to try to reach the South East corner destination by maneuvering the skateboard. <br> In some cases, it is impossible to reach the destination. For example, in the diagram above, if one starts at the North East corner (top right in the diagram), the only way is to go is South, until the Drop square is reached (three squares South), and the contestant is stuck there. <br> A contestant asks you to figure out the number of squares at the North or West boundary (top or left boundary in the map) from which it is feasible to reach the destination. <br> Constraints $\text { i. } \quad 5<=\mathrm{N}<=50$ <br> Input Format <br> The first line of the input is a positive integer N , which is the number of squares in each side of the grid. <br> The next N lines have a N strings of characters representing the contents of the map for that corresponding row. Each string may be F, representing the Final destination, D, representing a drop square, or a set of up to three of the possible four directions (N,E,S,W) in some random order. These represent the directions in which the contestant can maneuver the skateboard when in that square. <br> Output <br> The output is one line with the number of North or West border squares from which there is a safe way to maneuver the skateboard to the final destination. <br> Explanation |
| :---: | :---: |


|  | Example 1 <br> Input <br> 6 <br> ES,ES,SE,ES,ES,S <br> SE,ES,SE,ES,ES,S <br> ES,ES,SE,ES,SE,S <br> ES,SE,ES,SE,E,D <br> SE,ES,D,WSE,NES,NS <br> E,E,NE,E,E,F <br> Output <br> 9 |
| :--- | :--- |
| Chakravyuha <br> Problem Description <br> During the battle of Mahabharat, when Arjuna was far away in the battlefield, Guru Drona <br> made a Chakravyuha formation of the Kaurava army to capture YudhisthirMaharaj. <br> Abhimanyu, young son of Arjuna was the only one amongst the remaining Pandava army <br> who knew how to crack the Chakravyuha. He took it upon himself to take the battle to the <br> enemies. <br> Abhimanyu knew how to get power points when cracking the Chakravyuha. So great was <br> his prowess that rest of the Pandava army could not keep pace with his advances. Worried <br> at the rest of the army falling behind, YudhisthirMaharaj needs your help to track of <br> Abhimanyu's advances. Write a program that tracks how many power points Abhimanyu <br> has collected and also uncover his trail <br> A Chakravyuha is a wheel-like formation. Pictorially it is depicted as below |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| 1 | 2 | 3 | 4 | 5 |
| ---: | ---: | ---: | ---: | ---: |
| 16 | 17 | 18 | 19 | 6 |
| 15 | 24 | 25 | 20 | 7 |
| 14 | 23 | 22 | 21 | 8 |
| 13 | 12 | 11 | 10 | 9 |

Fig 2. Army unit placements in Chakravyuha of size 5
The entry point of the Chakravyuha is always at the $(0,0)$ co-ordinate of the matrix above. This is where the 1 st army unit guards. From $(0,0)$ i.e. 1 st unit Abhimanyu has to march towards the center at $(2,2)$ where the 25 th i.e. the last of the enemy army unit guards. Remember that he has to proceed by destroying the units in sequential fashion. After destroying the first unit, Abhimanyu gets a power point. Thereafter, he gets one after destroying army units which are multiples of 11 . You should also be a in a position to tell YudhisthirMaharaj the location at which Abhimanyu collected his power points.

## Input Format:

First line of input will be length as well as breadth of the army units, say N

## Output Format:

- Print NxN matrix depicting the placement of army units, with unit numbers delimited by ( $\backslash t$ ) Tab character
- Print Total power points collected
- Print coordinates of power points collected in sequential fashion (one per line)
- Constraints: $0<\mathrm{N}<=100$

Sample Input and Output

| S. <br> NO. | Input | Output |
| :--- | :--- | :--- |
| 1 | 2 | 1 2 <br> 4 3 <br> Total Power points : 1  <br> $(0,0)$  |
| 2 | 5 | 1 2 3 4 5 <br> 16 17 18 19 6 <br> 15 24 25 20 7 <br> 14 23 22 21 8 <br> 13 12 11 10 9 <br> Total Power points : 3     <br> $(0,0)$     <br> $(4,2)$     |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.



L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

|  | Final Salary = <br> ii. Accumulated PF of the Employee after N number of Years in the following format <br> Final Accumulated $\mathrm{PF}=$ <br> Constraints: <br> Calculation should be done upto 11-digit precision and output should be printed with ceil value <br> Sample Input and Output |
| :---: | :---: |
| 9. | ISL Schedule <br> Problem Description <br> The Indian Soccer League (ISL) is an annual football tournament. <br> The group stage of ISL features N teams playing against each other with following set of rules: <br> i. N teams play against each other twice - once at Home and once Away <br> ii. A team can play only one match per day <br> iii. A team cannot play matches on consecutive days <br> iv. A team cannot play more than two back to back Home or Away matches <br> v. Number of matches in a day has following constraints <br> a. The match pattern that needs to be followed is - <br> - Day 1 has two matches and Day 2 has one match, <br> - Day 3 has two matches and Day 4 has one match and so on <br> b. There can never be 3 or more matches in a day <br> vi. Gap between two successive matches of a team cannot exceed floor(N/2) days where floor is the mathematical function floor() <br> vii. Derby Matches (any one) <br> a. At least half of the derby matches should be on weekend <br> b. At least half of the weekend matches should be derby matches <br> Your task is to generate a schedule abiding to above rules. <br> Input Format: <br> First line contains number of teams (N). <br> Next line contains state ID of teams, delimited by space <br> Output Format: <br> Match format: Ta-vs-Tb |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.


|  | Constraints: <br> i. The cost from one position to another will be 1 unit. <br> ii. A location once visited in a particular path cannot be visited again. <br> iii. A route will only consider adjacent hops. The route cannot consist of diagonal hops. <br> iv. The position with a hurdle cannot be visited. <br> v. The values MxN signifies that the matrix consists of rows ranging from 0 to $\mathrm{M}-1$ and columns ranging from 0 to $\mathrm{N}-1$. <br> vi. If the destination is not reachable or source/ destination overlap with hurdles, print cost as -1 . <br> Sample Input and Output |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | S. No. | Input | Output | Explanation |
|  | $1$ | $\begin{array}{\|ll\|} \hline 3 & 10 \\ 3 \\ 1 & 2 \\ 15 \\ 18 & 8 \\ 0 & 0 \\ 17 \end{array}$ | 24 | Here matrix will be of size $3 \times 10$ matrix with a hurdle at $(1,2),(1,5)$ and $(1,8)$ with starting point $\mathrm{A}(0,0)$ and stop point B(1,7) <br> 310 <br> 3 -- (no. of hurdles ) <br> 12 <br> 15 <br> 18 <br> 00 -- (position of A) <br> 17 -- (position of B) <br> ( $->$ ) count is 24 . So final answer will be 24 . No other route longer than this one is possible in this matrix. |
|  | $2$ | 22 1 0 10 10 0 | -1 | No path is possible in this $2 * 2$ matrix so answer is -1 |
| 11. | Min Pro <br> Problem <br> The task k modific the first Note- the both arra Input Fo | duct ar <br> Descrip <br> is to fin <br> cations a <br> array can <br> produc <br> ys <br> rmat: <br> i. Fi <br> ii. Se | ay <br> tion <br> the min re allowe either be sum is $S$ <br> st line of cond line | mum sum of Products of two arrays of the same size, given that on the first array. In each modification, one array element of increased or decreased by 2 . <br> mmation $(\mathrm{A}[\mathrm{i}] * \mathrm{~B}[\mathrm{i}])$ for all i from 1 to n where n is the size of <br> he input contains n and k delimited by whitespace contains the Array A (modifiable array) with its values |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.


L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

|  | S. <br> No. Input Outpu <br> t Comment <br> 1 20 2 (Below 20, there are 2 such members: 5 and 17) <br> $5=2+3$ <br> $17=2+3+5+7$ <br> 2 15 1  <br> Input Format: <br> First line contains a number N <br> Output Format: <br> Print the total number of all such prime numbers which are less than or equal to N . <br> Constraints: $2<\mathrm{N}<=12,000,000,000$ |
| :---: | :---: |
| 13. | kth largest factor of $\mathbf{N}$ <br> Problem Description <br> A positive integer $d$ is said to be a factor of another positive integer N if when N is divided by d, the remainder obtained is zero. For example, for number 12, there are 6 factors 1,2 , $3,4,6,12$. Every positive integer k has at least two factors, 1 and the number k itself.Given two positive integers N and k , write a program to print the kth largest factor of N . <br> Input Format: <br> The input is a comma-separated list of positive integer pairs ( $\mathrm{N}, \mathrm{k}$ ) <br> Output Format: <br> The kth highest factor of N . If N does not have k factors, the output should be 1 . <br> Constraints: <br> $1<\mathrm{N}<10000000000.1<\mathrm{k}<600$. You can assume that N will have no prime factors which are larger than 13. <br> Example 1 <br> Input: <br> 12,3 <br> Output: <br> 4 <br> Explanation: <br> N is $12, \mathrm{k}$ is 3 . The factors of 12 are $(1,2,3,4,6,12)$. The highest factor is 12 and the third largest factor is 4 . The output must be 4 |
| 14. | Coins Distribution Question (or Coins Required Question) <br> Problem Description <br> Find the minimum number of coins required to form any value between 1 to N , both inclusive. Cumulative value of coins should not exceed $N$. Coin denominations are 1 Rupee, 2 Rupee and 5 Rupee. |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

|  | Let's understand the problem using the following example. Consider the value of N is 13 , then the minimum number of coins required to formulate any value between 1 and 13 , is 6 . One 5 Rupee, three 2 Rupee and two 1 Rupee coins are required to realize any value between 1 and 13. Hence this is the answer. <br> However, if one takes two 5 Rupee coins, one 2 rupee coins and two 1 rupee coins, then to all values between 1 and 13 are achieved. But since the cumulative value of all coins equals 14 , i.e., exceeds 13 , this is not the answer. <br> Input Format <br> A single integer value <br> Output Format <br> Four Space separated Integer Values <br> 1st - Total Number of coins <br> 2nd - number of 5 Rupee coins. <br> 3rd - number of 2 Rupee coins. <br> 4th - number of 1 Rupee coins. <br> Constraints <br> $0<n<1000$ <br> Sample Input: <br> 13 <br> Sample Output: <br> 6132 |
| :---: | :---: |
| S. NO. | Debugging Experiments |
| 1. | Write error/output in the following code. ```# abc.py deffunc(n): return n + 10 func('Hello')``` |
| 2. | Write the output of the following code. <br> if not a or $b$ : <br> print 1 <br> elif not a or not b and c : <br> print 2 <br> elif not $a$ or $b$ or not $b$ and $a$ : <br> print 3 <br> else: <br> print 4 |


| 3. | Write error/output in the following code. $\text { count }=1$ <br> defdoThis(): <br> global count <br> for i in (1, 2, 3): <br> count $+=1$ <br> doThis() <br> print count |
| :---: | :---: |
| 4. | ```Write the output of the following code. check1 = ['Learn', 'Quiz', 'Practice', 'Contribute'] check2 \(=\) check1 check3 \(=\) check1[:] check2[0] = 'Code' check3[1] = 'Mcq' count \(=0\) for c in (check1, check2, check3): if \(c[0]==\) 'Code': count \(+=1\) if \(c[1]==\) 'Mcq': count \(+=10\) print count``` |
| 5. | What is the output of the following program? $\begin{aligned} & \mathrm{D}=\operatorname{dict}() \\ & \text { for } \mathrm{x} \text { in enumerate(range(2)): } \\ & \mathrm{D}[\mathrm{x}[0]]=\mathrm{x}[1] \\ & \mathrm{D}[\mathrm{x}[1]+7]=\mathrm{x}[0] \\ & \operatorname{print}(\mathrm{D}) \end{aligned}$ |
| 6. | What is the output/error in the following program? $\mathrm{D}=\left\{1: 1,2: \text { '2', '1' }^{\prime}: 1,{ }^{\prime} 2 \text { ' }: 3\right\}$ |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

|  | $\begin{aligned} & \mathrm{D}\left['^{\prime} 1^{\prime}\right]=2 \\ & \operatorname{print}(\mathrm{D}[\mathrm{D}[\mathrm{D}[\operatorname{str}(\mathrm{D}[1])]]]) \end{aligned}$ |
| :---: | :---: |
| 7. | What is the output/error in the following program? $\begin{aligned} & \mathrm{D}=\left\{1:\left\{\mathrm{A}^{\prime}:\{1: \text { "A" }\}, 2: \text { "B" }\right\}, 3: " \mathrm{C} ", \text { 'B' : "D", "D": 'E' }\right\} \\ & \operatorname{print(D[\mathrm {D}[\mathrm {D}[1][2]]],\text {end}=\text {"")}} \\ & \operatorname{print(D[D[1]["A"][2]])~} \end{aligned}$ |
| 8. | What is the output/error in the following program? $\begin{aligned} & \mathrm{D}=\operatorname{dict}() \\ & \text { for } \mathrm{i} \text { in range (3): } \\ & \text { for } \mathrm{j} \text { in range(2): } \\ & \mathrm{D}[\mathrm{i}]=\mathrm{j} \\ & \operatorname{print}(\mathrm{D}) \end{aligned}$ |
| 9. | What is the output/error in the following program? $\begin{aligned} & \mathrm{x}=[\text { 'ab', 'cd'] } \\ & \text { for } \mathrm{i} \text { in } \mathrm{x}: \\ & \mathrm{x} \text {.append(i.upper()) } \\ & \text { print( } \mathrm{x}) \end{aligned}$ |
| 10. | What is the output/error in the following program? $\begin{aligned} & \mathrm{i}=1 \\ & \text { while True: } \\ & \quad \text { if } \mathrm{i} \% 3==0 \text { : } \\ & \quad \text { break } \\ & \text { print(i) } \\ & \mathrm{i}+=1 \end{aligned}$ |


| B. TECH FIRST YEAR |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Course Code | AASL0151 | L T P | Credit |  |  |
| Course Title | Professional Communication Lab | 0 | 0 | 2 | 1 |
| Suggested list of Experiment |  |  |  |  |  |


| Sr. No. | Name of Experiment |
| :---: | :--- |
| 1 | Extempore speech\& Jam Sessions (4 hrs) |
| $\mathbf{2}$ | Group Discussion (4 hrs) |
| $\mathbf{3}$ | Presentations (Individual and group) (4 hrs) |
| $\mathbf{4}$ | Listening Practice (2 hrs) |
| $\mathbf{5}$ | News/ Book Review (Presentation based) (4 hrs) |
| Lab Course Outcome: <br> At the end of the course students will be able to - <br> CO 1 | Learn to use English language for communicating ideas. |
| CO 2 | Develop interpersonal skills and leadership abilities. |
| CO 3 | Practice their public speaking skills and gain confidence in it. |
| CO 4 | Realize the importance of analytical listening during communication. |
| CO 5 | Apply critical thinking skills in interpreting texts and discourses. |


| B. TECH FIRST YEAR |  |  |  |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- |
| Course Code | AME0151 | L T P | Credit |  |  |
| Course Title | Digital Manufacturing Practices | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{1 . 5}$ |
| Course objective: |  |  |  |  |  |
| 1 | To impart knowledge to students about the latest technological developments in <br> manufacturing technology. |  |  |  |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| T | To make the students capable to identify and use primary machine tools for manufacturing of job/product. |  |
| :---: | :---: | :---: |
| 3 T | Tomake the students understand constructional features, principle and coding/ programming of CNC machines. |  |
| T | To explain current and emerging 3D printing technologies in industries. |  |
| T | To impart fundamental knowledge of Automation and Robotics. |  |
| Pre-requisites: Basic knowledge about materials and their properties |  |  |
| Course Contents / Syllabus |  |  |
| UNIT-I | Basics of Manufacturing processes | 3 Hours |
| Introduction to workshop layout, engineering materials, mechanical properties of metals, introduction to manufacturing processes, concept of Industry 4.0. |  |  |
| UNIT-II | I $\quad$ Machining processes | 5 Hours |
| Introduction to conventional and CNC machines, machining parameters and primary operations, CNC programming- G\& M Codes |  |  |
| UNIT-III | II $\quad$ Additive manufacturing (3D printing) | 3 Hours |
| Introduction to additive manufacturing, 3D printing technologies, reverse engineering, introduction to injection moulding. |  |  |
| UNIT-IV | V $\quad$ Automation and Robotics | 3 Hours |
| Introduction to basics of automation and robotics, classification based on geometry and path movements. PTP motion using robot arm. |  |  |
| Total hours :14 |  |  |
| Course outcome: After completion of this course students will be able to |  |  |
| CO 1U <br> in | Understand various manufacturing process which are applied in the industry. | $\mathrm{K}_{1}, \mathrm{~K}_{2}$ |
| CO 2 | Demonstrate the construction and working of conventional machine tools and computer controlled machine tools. | $\mathrm{K}_{1}, \mathrm{~K}_{2}$ |
| CO 3 | Understand the programming techniques of CNC machines and Robotic arms. | $\mathrm{K}_{1}, \mathrm{~K}_{2}$ |
| CO 4 U | Use the different 3D printing techniques. | $\mathrm{K}_{1}, \mathrm{~K}_{2}$ |
| Text books |  |  |
| A course in Workshop technology by B.S. Raghuwanshi, Vol I \& II, Dhanpat Rai \& sons, New Delhi (30\%) |  |  |
| Industrial automation and Robotics by A.K. Gupta., S K Arora, Laxmi publication (30\%) |  |  |
| CNC Fundamentals and Programming by P.M Agarwal, V.J Patel, Charotar Publication$(25 \%)$ |  |  |
| Reference Books |  |  |
| (1) Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 4th edition, Pearson Education India Edition, 2002.(80\% syllabus) |  |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| (2) Rapid Product Development, Kimura Fumihiko(25\% syllabus) |  |
| :--- | :--- |
| (3) CNC Machines by M.Adhitan, B.S Pabla; New age international. (25\% syllabus) |  |
| (4) CAD/CAM, by Groover and Zimmers, Prentice Hall India Ltd(25\% syllabus) |  |
| NPTELYoutube /Faculty video links: |  |
| Unit 1 | https://youtu.be/b1U9W4iNDiQ , https://youtu.be/QZdY3ZRY9RA, <br> https://youtu.be/KX1 NqNTIqw, https://youtu.be/deAIYwPns6w |
| Unit2 | https://youtu.be/jF4F8Zr2YO8, https://youtu.be/bDpfTzV6StA <br> https://youtu.be/6G3sHym7YSo |
| Unit3 | https://youtu.be/TZmYTfPfhNE, https://youtu.be/yW4EbCWaJHE |
| Unit4 | https://youtu.be/K-Zg1-fR9kU , https://youtu.be/xrwz9IxpMJg, <br> https:///youtu.be/j8vYCIEnyk0 |

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{B. TECH. FIRST YEAR} <br>
\hline \multicolumn{2}{|l|}{`Course Code} \& AME0151 \& L T P \& Credit <br>
\hline \multicolumn{2}{|l|}{Course Title} \& Digital Manufacturing Practices \& 0 0 3 \& 1.5 <br>
\hline \multicolumn{5}{|c|}{Suggested list of Experiments (At least 10 experiments to be performed)} <br>
\hline Sr. No. \& \multicolumn{4}{|c|}{Name of Experiments} <br>
\hline 1 \& \multicolumn{4}{|l|}{To perform facing, turning, taper turning, knurling, grooving and threading operations as per given drawing on lathe machine.} <br>
\hline 2 \& \multicolumn{4}{|l|}{To prepare a T-Shape and U-shape work piece by filing, sawing, drilling in Fitting shop.} <br>
\hline 3 \& \multicolumn{4}{|l|}{To cast a component using a single piece pattern in foundry shop,} <br>
\hline 4 \& \multicolumn{4}{|l|}{To study the G-M Codes for CNC machine and to perform different machining operations including facing, turning, grooving etc on CNC lathe.} <br>
\hline 5 \& \multicolumn{4}{|l|}{To cut a slot on CNC milling machine as per given drawing.} <br>
\hline 6 \& \multicolumn{4}{|l|}{To make a hole of given diameter on CNC drilling machine.} <br>
\hline 7 \& \multicolumn{4}{|l|}{To study construction and working of FDM 3D printing machine.} <br>
\hline 8 \& \multicolumn{4}{|l|}{To study construction and working of SLA 3D printing machine.} <br>
\hline 9 \& \multicolumn{4}{|l|}{To study the development of drawings using 3D scanner.} <br>
\hline 10 \& \multicolumn{4}{|l|}{To make an air tight bottle cap by using injection moulding.} <br>

\hline | L.Lecture, T: Tu |
| :--- |
| Semester Exam: | \& \multicolumn{4}{|l|}{} <br>


\hline | 12 | P |
| :--- | :--- |
| 12 |  | \& \multicolumn{4}{|l|}{Practice on pneumatic control system using single acting cylinder.} <br>

\hline
\end{tabular}

| B. TECH FIRST YEAR |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Course Code | AAS0203 | L | $\mathbf{T}$ | $\mathbf{P}$ | Credit |
| Course Title | Engineering Mathematics-II | $\mathbf{3}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{4}$ |
| Course objective:The objective of this course is to familiarize the engineering students with <br> techniques of solving Ordinary <br> Differential Equations, Fourier <br> series expansion, Laplace |  |  |  |  |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

Transform and vector calculus and its application in real world. It aims to equip the students with adequate knowledge of mathematics that will enable them in formulating problems and solving problems analytically.

Pre-requisites:Knowledge of Engineering Mathematics -I and Mathematics upto $12^{\text {th }}$ standard.

## Course Contents / Syllabus

UNIT-I | Ordinary Differential Equation of Higher Order | $\mathbf{1 0}$ hours |
| :--- | :--- |

Linear differential equation of nth order with constant coefficients, Cauchy-Euler equation, Simultaneous lineardifferential equations, Second order linear differential equations with variable coefficients, Solution by changing independent variable, Reduction of order, Normal form, Method of variation of parameters, Series solutions (Frobenius Method).

| UNIT-II | Sequences and series | 8 hours |
| :--- | :--- | :---: |

Definition of Sequence and series with examples, Convergence of sequence and series, Tests for convergence of series, (Ratio test, D' Alembert's test, Raabe's test). Fourier series, Half range Fourier sine and cosine series.

| UNIT-III | Laplace Transform | 8 hours |
| :--- | :--- | :--- |

Laplace transform, Existence theorem, Laplace transforms of derivatives and integrals, Initial and final value theorems, Unit step function, Dirac- delta function, Laplace transform of periodic function, Inverse Laplace transform, Convolution theorem, Application to solve simple linear and simultaneous differential equations.

| UNIT-IV | Vector Calculus | 8 hours |
| :--- | :--- | :--- |

Vector differentiation: Gradient, Curl and Divergence and their Physical interpretation, Directional derivatives, Tangent and Normal planes.
Vector Integration: Line integral, Surface integral, Volume integral, Gauss's Divergence Theorem, Green's theorem, Stoke's theorem ( without proof) and their applications.

| UNIT-V | Aptitude-II | 8 hours |
| :--- | :--- | :--- |

Ratio, Proportion \& Partnership, Problem of ages, Allegation \& Mixture, Direction, Blood relation, Simple \& Compound interest

Course outcome: After completion of this course students are able to:

| CO 1 | Apply the concept of differentiation to solve differential equations. | $\mathrm{K}_{3}$ |
| :--- | :--- | :--- |
| CO 2 | Apply the concept of convergence of sequence and series to evaluate <br> Fourier series | $\mathrm{K}_{3}$ |
| CO 3 | Apply the Laplace transform to solve ordinary differential equations | $\mathrm{K}_{3}$ |
| CO 4 | Apply the concept of vector calculus to evaluate line, surface and volume <br> integrals. | $\mathrm{K}_{3}$ |
| CO 5 | Solve the problems of Proportion \& Partnership, Problem of ages, <br> Allegation \& Mixture, Direction, Blood relation , Simple \& Compound | $\mathrm{K}_{3}$ |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.


L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

|  | https://youtu.be/c9NibpoQjDk <br> https://www.youtube.com/playlist?list=PLNOGIXC4kCBT8G5pWCrH71hmwaAvwsBY3 |
| :---: | :---: |
| Unit 4 | https://youtu.be/lwgqKjA6wko <br> https://youtu.be/d4OyeuRTZNA <br> https://youtu.be/j36IJKSJMQk <br> https://youtu.be/DhwMOrl6Q9g <br> https://youtu.be/DhwMOrl609g <br> https://youtu.be/fsMouTxce A <br> https://youtu.be/va5olnzDCGc <br> https://youtu.be/2SB3IVCwW1w <br> https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable- <br> functions/line-integrals-vectors/v/line-integra <br> https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable- <br> functions/3d-flux/v/vector-representation-of-a-su <br> http://nucinkis-lab.cc.ic.ac.uk/HELM/workbooks/workbook 29/29 2 surfac <br> https://www.youtube.com/watch?v=Mb6Yb-SGqio <br> https://www.khanacademy.org/math/multivariable-calculus/greens-theorem-and- <br> stokes-theorem/stokes-theorem/v/stokes-theorem-intuition <br> https://www.youtube.com/watch?v=eSqznPrtzS4 |
| Unit 5 | https://www.GovernmentAdda.com |


| B.TECH FIRST YEAR |  |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Course Code | AAS0201B | $\mathbf{L}$ | $\mathbf{T}$ | $\mathbf{P}$ | Credit |  |  |
| Course Title | Engineering Physics | $\mathbf{3}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{4}$ |  |  |
| Course objective: |  |  |  |  |  |  |  |
| 1 | To provide the knowledge of Relativistic Mechanics and their uses to <br> engineering applications. |  |  |  |  |  |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| 2 | To provide the knowledge of Quantum Mechanics and to explore poss engineering utilization. |  |
| :---: | :---: | :---: |
| 3 |  |  |
| 4 | To provide the knowledge of Crystallography and its uses to engineering applications. |  |
| 5 | To provide the basic knowledge of Superconductivity and Nanotechnology which is necessary to understand the working of modern engineering tools and techniques. |  |
| Pre-requisites: Newton's laws of motions, scalar and vectors, electricity and magnetism, basic laws of optics |  |  |
| Course Contents / Syllabus |  |  |
| UNIT-I | Relativistic Mechanics | 8 hours |
| Frame of reference, Inertial \& non-inertial frames, Galilean transformations, Michelson Morley experiment, Postulates of special theory of relativity, Lorentz transformations, Length contraction, Time dilation, Velocity addition theorem, Variation of mass with velocity, Einstein's mass energy relation, Relativistic relation between energy and momentum, Massless particle. <br> Some engineering applications(qualitative): Global positioning system (GPS), Application to Satellites. |  |  |
| UNIT-II | Quantum Mechanics | 8 hours |
| Introduction to wave-particle duality, de Broglie matter waves, Phase and group velocities, Heisenberg's uncertainty principle and its applications, Wave function characteristics and significance, Timedependent and time- independent Schrödinger's wave equations, Particle in one-dimensional rigid box. Theory of Quantum excitation of the Higgs field (Higgs Boson or GOD particle) (qualitative). |  |  |
| UNIT-III | Wave Optics | 10 hours |
| Coherent sources, Interference in uniform and wedge shaped thin films, Necessity of extended sources, Newton's Rings and its applications. Fraunhofer diffraction at single slit and at double slit, Absent spectra, Diffraction grating, grating spectra, Rayleigh's criterion of resolution, Resolving power of grating, Optical filters. |  |  |
| UNIT-IV | Crystal Physics | 6 hours |
| Crystalline and non-crystalline materials, Crystal systems and Bravais lattices, Space lattices of cubic systems, Miller indices, Relation between inter-planer distance and cube edge, crystal structure of NaCl and diamond, Atomic packing factor of the cubic system, Relation between lattice constant and density. Diffraction of X-rays by crystal planes, Bragg's law. |  |  |
| UNIT-V | Superconductivity and Nanomaterials | 8 hours |
| Temperature dependence of resistivity, Effect of magnetic field (Meissner effect), Penetration depth, Type I and Type II Superconductors, Temperature dependence of critical field, BCS theory(qualitative), High temperature superconductors, <br> Some engineering applications(qualitative): Concept of Maglev vehicles (Bullet Trains \& hyper loop trains). <br> Introduction to nanomaterials, Basic principles of nano- science and technology, Creation and use of |  |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.
bucky balls, Structure, properties and uses of carbon nanotubes.
Some engineering applications(qualitative): Radar absorbing materials (RAM) or Stealth materials used in military aircrafts (e.g.Rafale). Transformation of micro to nano-UAVs (Drones)

Course outcome: After completion of this course students willbeable to:

| CO 1 | Solve the relativistic mechanics problems | K1,K2,K3 |
| :--- | :--- | :--- |
| CO 2 | Apply the concept of quantum mechanics | K1,K2,K3 |
| CO 3 | Apply the laws of optics and their application in various processes | K1,K2,K3 |
| CO 4 | Calculate the various parameters of crystal structures. | K1,K2,K3 |
| CO 5 | Explain the basic phenomena of superconductivity and nanotechnology. | K1,K2 |

## Text books

1. A. Beiser, Concepts of Modern Physics (McGraw Hill)
2. Brijlal\&Subramanian,Optics(S. Chand )
3. Neeraj Mehta,Applied Physics for Engineers (PHI Learning, New)

## Reference Books

1. Robert Resnick,Introductionto Special Theory of Relativity (Wiley)
2. Katiyar and Pandey, Engineering Physics: Theory and Practical (Wiley India)
3. H. K. Malik and A. K. Singh,Engineering Physics (McGrawHill)
4. J.W. Jewett, Jr. and R. A. Serway , Physics for Scientists and Engineers with Modern Physics,7th Edn. (CENGAGE Learning)
5. C. Kittel, Solid State Physics,7th Edn. (Wiley Eastern)
6. V. Raghavan, Materials Science and Engineering ( Prentice Hall, India)
7. S.O. Pillai, Solid State Physics,5th Edn (New Age International )
8. R. Booker and E. Boysen, Nanotechnology (Wiley Publ.)
9. K.Rajagopal, Engineering Physics, 2nd Edn. (PHI Learning)
10. G. Aruldhas , Engineering Physics (PHI Learning)
11. S.D. Jain and G.S. Sahasrabudhe, Engineering Physics (Universities Press)
12. L. F. Bates, Modern Magnetism, (Cambridge Univ. Press)
13. F.T.S.Yu, X.-Y.Yang, Introduction to Optical Engineering (Cambridge Univ.Press)
14. G.Keiser, Optical Communications Essentials (Tata McG

## B. TECH FIRST YEAR

| Course Code | ACSE0201 | L | T | P | Credit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Course Title | Programming for Problem Solving using C | $\mathbf{3}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{3}$ |
| Course objective: The objective of the course is to make its students able |  |  |  |  |  |
| 1 | To understand basic concepts of C-programming language |  |  |  |  |
| 2 | To implement C programs to solve complex problems |  |  |  |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| 3 | To enhance debugging, analyzing and problem-solving skills |  |
| :---: | :---: | :---: |
|  | To create diversified solutions for real world applications using C language |  |
| 5 | To acquire the knowledge of variable allocation andbinding, conditional statement, control flow, types, function, pointer, parameter passing, array, structure and file handling to solve real world problems |  |
| Pre-requisites:Students are expected to be able to open command prompt window or terminal window, edit a text file, download and install software, and understand basic programming concepts. |  |  |
| Course Contents / Syllabus |  |  |
| N | Basic concep | 8hours |
| Introduction to components of a computer system: Memory, processor, I/O Devices, operating system, Concept of Assembler, compiler, interpreter, linker and loader. <br> Number System: introduction to number system, binary arithmetic. Concept of algorithms, Flow Charts. |  |  |
|  |  |  |
| Programming using C:applications of C programming, Structure of C program, Overview of compilation and execution process in an IDE, transition from algorithm to program, Syntax, logical errors and Run time errors, object and executable code,Tokens of C language: Keywords, identifiers, constant, data types. <br> Arithmetic expressions and precedence: Operators,operator precedence and associativity, type conversion, mixed operands, Pitfalls/Issues with sizeof () usage. |  |  |
| UNIT-III | Decision Control Statements, pre-processor directives |  |
| Conditional Branching: if, else-if, nested if - else, switch statements, use of break and default with switch. Iteration and loops:Concept of loops, for, while and do-while, multiple loop variables, use of break and continue statements, nested loop. <br> Pre-processor directives: defining and calling macros, file inclusion, conditional compilation. <br> Pointers: defining and declaring pointer, pointer arithmetic and scaling, Pointer Aliasing. |  |  |
| UNIT- |  | 8 hours |
| Functions: Concept of Sub-programming, function, types of functions, passing parameters to functions: call by value, call by reference, recursive functions, scope of variable, local and global variables, Nesting of Scope, Storage classes: Auto, Register, Static and Extern <br> Arrays: Array notation and representation (one and two dimensional), array using pointers, manipulating array elements, 2-d arrays used in matrix computation. Strings and C string library, Structure, union, Array of structures, Self-referential structures, passing arrays and structure as arguments Searching techniques (Linear, Binary Search), Sorting Algorithms (Bubble, Insertion and Selection) Introduction to dynamic memory allocation (malloc(), calloc(), realloc(), free()) |  |  |
| UNIT-V | File handling and Introduction to Embedded Programming | 8 hours |
| File handling: File Pointer, File I/O functions and modes, Input and Output using file pointers, Character Input and Output with Files. <br> Introduction to Embedded Programming: Embedded systems, Introduction to 8051microcontrolller, Installing the Keil software and loading the project, Configuring the simulator, Building the target, Running the simulation, Dissecting the program. <br> Case Study: Intruder Alarm System. |  |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| Course outcome: At the end of course, the student will be able to |  |  |
| :---: | :---: | :---: |
| CO 1 | Develop simple algorithms for arithmetic and logical problems. | $\mathrm{K}_{2}$ |
| CO 2 | Implement and trace the execution of programs written in C language. | $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{4}$ |
| CO 3 | Implement conditional branching and iteration | $\mathrm{K}_{3}$ |
| CO 4 | Use function, arrays and structures to develop algorithms and programs. | $\mathrm{K}_{2,} \mathrm{~K}_{6}$ |
| CO 5 | Use searching and sorting algorithm to arrange data and use file handling for developing real life projects | $\mathrm{K}_{2}, \mathrm{~K}_{4}$ |
| Textbooks: |  |  |
| (1) Herbert Schildt, "C: The Complete Reference", OsbourneMcGraw Hill, 4th Edition, 2002. |  |  |
| (2) E Balaguruswami, "Computer Concepts and Programming in C", McGraw Hill, 2010. |  |  |
| (3) Michael J. Pont, "Embedded C", Addison-wesley Pearson Education, 2002. |  |  |
| Reference Books: |  |  |
| (1) The C programming by Kernighan Brain W. and Ritchie Dennis M., Pearson Education. |  |  |
| (2) Yashwant P. Kanetkar"Let Us C", BPB publication, 2017. |  |  |
| (3) Computer Basics and C Programming by V. Rajaraman, PHI Learning pvt. Limited, 2015. |  |  |
| (4) Yashwant P. Kanetkar, "Working with C", BPB publication, 2003. |  |  |
| E-Book Links: |  |  |
| (1) https://en.wikibooks.org/wiki/C Programming |  |  |
| (2) https://en.wikibooks.org/wiki/A Little_C Primer |  |  |
| (3) https://www.goodreads.com/book/show/6968572-ansi-c-programming |  |  |
| (4)https://www.pdffiller.com/347652461-projects-in-c-by-yashwant-kanetkar-pdfpdf-c-projects-yashwant-kanetkar-pdf-form- |  |  |
| (5)http://www.freebookcentre.net/programming-books-download/Lecture-Notes-On-C-Programming-by-L.-V.-Narasimha-Prasad-and-E.-Krishnarao-Patro.html |  |  |
| Reference Links: |  |  |
| (1) https://nptel.ac.in/courses/106/104/106104128/ |  |  |
| (2)https://nptel.ac.in/courses/106/104/106104074/ |  |  |
| (3)https://nptel.ac.in/courses/106/102/106102066/ |  |  |
| (4)https://nptel.ac.in/courses/106/105/106105171/ |  |  |
| (5)https://www.youtube.com/watch?v=IdXrCPzNnkU\&list=PLJ5C 6qdAvBFzL9su5JFX8x80BMhkPy1\&index=4 |  |  |
| (6)https://www.youtube.com/watch?v=L2oataK7F10\&list=PLJ5C 6qdAvBFzL9su5JFX8x80BMhkPy1\&index=11 |  |  |
| (7)https://www.youtube.com/watch?v=K538VFFmFGc\&list=PLJ5C_6qdAvBFzL9su5JFX8x80BMhkPy1\&index=14 |  |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

```
(8)https://www.youtube.com/watch?v=HyDpW7Al6_E&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=15
(9)https://www.youtube.com/watch?v=0g82dDC-mtc&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=17
(10)https://www.youtube.com/watch?v=d1EHD8RoLDQ&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=19
(11)https://www.youtube.com/watch?v=5xJ1GXTa7IU&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=21
(12)https://www.youtube.com/watch?v=I9828WOCEMg&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=26
(13)https://www.youtube.com/watch?v=V7AZuMuJmXY&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=32
(14)https://www.youtube.com/watch?v=AJvCmpt1UU8&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=37
(15)https://www.youtube.com/watch?v=1iwmwEJhcMw&list=PLJ5C_6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=39
(16)https://www.youtube.com/watch?v=K4qXMLItABI&list=PLJ5C 6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=45
(17)https://www.youtube.com/watch?v=Lole 9cTtPE&list=PLJ5C 6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=53
(18)https://www.youtube.com/watch?v=kDDd7AmXq1w&list=PLJ5C 6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=55
(19)https://www.youtube.com/watch?v=Z 0xXmOgYtY&list=PLJ5C 6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=58
(20)https://www.youtube.com/watch?v=u60YRSB2isQ&list=PLJ5C 6qdAvBFzL9su5J-
FX8x80BMhkPy1&index=61
```

| B. TECH FIRST YEAR |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Course Code | AEC0201 | L | T | P | Credit |  |  |
| Course Title | Basic Electrical and Electronics Engineering | $\mathbf{3}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{4}$ |  |  |
| Course objective: |  |  |  |  |  |  |  |
|  | 1. To provide the basics of DC and AC analysis of (Single phase and Three phase) electrical <br> circuits. <br> 2. To study the basics of transformer and calculate its efficiency. |  |  |  |  |  |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| To impart elementary knowledge of Power System Components, Earthing, and Energy Consumption. <br> To provide the knowledge of Diode, Display devices, Op-Amp, Sensors, IoT and its application. |  |  |
| :---: | :---: | :---: |
| Pre-requisites: Basic knowledge of 12th Physics and Mathematics |  |  |
| Course Contents / Syllabus |  |  |
| UNIT-I | D.C CIRCUIT ANALYSIS AND NETWORK THEOREMS <br> Concept of network, Active and passive elements, voltage and current sources, concept of linearity and linear network, unilateral and bilateral elements, source transformation, Kirchoff's Law: loop and nodal methods of analysis, star delta transformation, network theorems: Superposition theorem, Thevenin's theorem, Norton's theorem, maximum power transfer theorem. | 10 |
| UNIT-II | STEADY STATE ANALYSIS OF AC CIRCUIT <br> Single phase AC circuit: AC fundamentals, concept of phasors, phasor representation of sinusoidally varying voltage and current, analysis of series and parallel RLC circuits, j-notation, Different types of power, power factor, resonance in series and parallel circuits. <br> Three phase AC circuit: Advantages of three phase circuit, voltage and current relations in star and delta connections. | 10 |
| UNIT-III | SINGLE PHASE TRANSFORMER AND ELEMENTS OF POWER SYSTEM <br> Single Phase Transformer: Principle of operation, construction, EMF equation, equivalent circuit, losses and efficiency. <br> Introduction to Elements of Power System: General layout of Power system, Components of Distribution system: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Importance of Earthing, Elementary calculations for energy consumption, Battery Backup. | 09 |
| UNIT-IV | SEMICONDUCTOR DIODE AND THEIR APPLICATIONS | 10 |
|  | Introduction of Semiconductors: Intrinsic and Extrinsic, P-N Junction Diode: Depletion layer, V-I characteristics, Half and Full Wave rectification, Clippers, Breakdown Mechanism: Zener and Avalanche, Zener Diode as Shunt Regulator. <br> Display Devices <br> Liquid Crystal Display (LCD), Light Emitting Diode (LED), Organic-Light Emitting Diode (O-LED), 7- segment display. |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| UNIT-V | OPERATIONAL AMPLIFIERS <br> Introduction, Op-Amp Basic, Practical Op-Amp Circuits (Inverting Amplifier, Noninverting Amplifier, Summing Amplifier, Integrator, Differentiator). <br> Electronic Instrumentation <br> Digital Multimeter (DMM), Types of sensor, Introduction to IoT and its application. | 09 |
| :---: | :---: | :---: |
| Course outcome: After successful completion of this course students will be able to |  |  |
| CO 1 | ly the principle of $\mathrm{KVL} / \mathrm{KCL}$ and network theorems for analysis of circuit. |  |
| CO 2 | yze the steady state behavior of single phase and three phase AC electrical uits. |  |
| CO 3 | trate and analyze the working principles of a single phase transformer, iency, and components of Power system, Earthing, and energy calculation. |  |
| CO 4 | ain the construction, working principle, and application of PN junction diode, r diode and Display devices. |  |
| $\text { CO } 5$ | ain the concept of Op-Amp, Digital multimeter, Sensors,IoT and its ications. |  |
| Text books (Atleast3) |  |  |
| $\begin{array}{ll} \hline \text { 1. } & \text { D. } \\ \text { 2. } & \text { D. } \\ \text { 3. } & \text { C. } \\ \text { 4. } & \text { J. } \\ 5 . & \text { Ro } \\ & \text { Ed } \\ 6 . & H \end{array}$ | Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill. Wadhwa, Basic Electrical Engineering, Pearson Education upta, Basic Electrical Engineering, Kataria\& Sons <br> L. Boylestad / Louis Nashelsky "Electronic Devices and Circuit Theory", Latest tion. <br> alsi, "Electronic Instrumentation", Latest Edition, TMH Publication. | n, Pearson |
| Reference Books (Atleast 3) |  |  |
| $\begin{array}{ll} \hline 1 . & \mathrm{E.} \\ \text { 2. } & \mathrm{L} . \\ \text { 3. } & \mathrm{V} \\ \text { 4. } & \mathrm{Da} \\ \text { 5. } & \mathrm{Ja} \\ & \mathrm{TI} \end{array}$ | , <br> brow, "Fundamentals of Electrical Engineering", Oxford University Press. <br> oro, "Electrical Engineering Fundamentals", Pearson India. <br> A. Bell, "Electronic Devices and Circuits",Latest Edition, Oxford University Press. <br> Millman, C.C. Halkias, Stayabratajit, "Electronic Devices and Circuits", Latest |  |
| NPTEL/Youtube/ Faculty Video Link: |  |  |
| Unit 1 | 1. https://youtu.be/FjaJEo7knF4 <br> 2. https://youtu.be/UsLbB5k9iuY <br> 3. https://youtu.be/1QfNg965OyE <br> 4. https://youtu.be/wWihXHCOmUc |  |
| Unit 2 | 5. https://youtu.be/uIGKCeOoR88 <br> 1. https://youtu.be/YLGrugmDvc0 <br> 2. https://youtu.be/0f7YkVorOmY |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

|  | 3. <br> https://youtu.be/LM2G33cunKp4 <br>  <br> 6. | https://youtu.be/S5464NnKOq4 |
| :--- | :--- | :--- |


| B.TECH FIRST YEAR(Foreign Language) |  |  |  |
| :--- | :---: | :---: | :---: |
| Course Code | AAsL0202 | L T P | Credit |
| Course Title | French | $\mathbf{2 0 0}$ | $\mathbf{2}$ |
| Course objective: |  |  |  |



L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| $>$ Food, drink, groceries and meal <br> $>$ Everyday life/ telling time <br> $>$ Making appointments <br> $>$ Use definite and indefinite articles. |  |  |
| :---: | :---: | :---: |
| UNIT-V | Writing | 8 Hours |
| $>$ Fill in a simple form ( fiched'inscription/ carte d' identité) <br> $>$ Describe pictures (Speak and Write) <br> $>$ Write a short text on oneself |  |  |
| Course outcome <br> At the end of the course students will be able to |  |  |
| CO 1 | Recognize the basic sounds, letters, numbers, words and phrases of French. |  |
| CO 2 | Develop basic French vocabulary |  |
| CO 3 | Use simple phrases in real life conversations |  |
| CO 4 | Read simple sentences |  |
| CO 5 | Write simple sentences and fill in a form |  |


| B.TECH FIRST YEAR (Foreign Language) |  |  |  |
| :--- | :--- | :---: | :---: |
| Course Code | AASL0203 | L T P | Credit |
| Course Title | German | $\mathbf{2}$ | $\mathbf{0} 0$ |$] \mathbf{2}$.

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

## Pre-requisites:

The student should be able to communicate in basic English.
Course Contents / Syllabus

| UNIT-I | Introduction to German | $\mathbf{5}$ Hours |
| :--- | :--- | :--- |

$>$ Introducing ourselves and others,
$>$ Grammar: W questions,
$>$ personal pronouns,
$>$ simple sentence,
$>$ verb conjugation

| UNIT-II | Vocabulary building | 6 Hours |
| :--- | :--- | ---: |
| $\gg$ Vocabulary building - the alphabet, |  |  |
| $\gg$ hobbies, |  |  |
| $\gg$ numbers, months, seasons |  |  |
| $>$ | Grammar : articles, singular and plural forms |  |
| UNIT-III | Everyday common simple sentences | $\mathbf{5}$ Hours |

In the city / naming places and buildings, means of transport, basic directions
Grammar: definite and indefinite articles;
negation - kein and nicht; imperative

| UNIT-IV | Reading | $\mathbf{7}$ Hours |
| :--- | :--- | :--- |

food, drink, family / groceries and meals
Grammar: the accusative
Everyday life, telling time, making appointments
Grammar: prepositions am, um, von. bis; modal verbs, possessive articles
Leisure activity, celebrations
Grammar: separable verbs, the accusative, past tense of to have and to be

| UNIT-V | Writing | $\mathbf{7}$ Hours |
| :--- | :--- | :--- |

Contacts, filling basic information and forms
Grammar: dative
A short text about oneself.
Grammar: changing prepositions
Professions
Grammar: perfect tense
Clothes Health and the body
Grammar: perfect tense and dative
Grammar: the imperative and modal verbs

## Course outcome:

At the end of the course students will be able to

| CO 1 | Understand and be familiar with basic German and the culture |  |
| :---: | :--- | :--- |
| CO 2 | Recognise the foundational vocabulary |  |
| CO 3 | Use simple phrases in everyday conversations |  |
| CO 4 | Read simple sentences | Write simple sentences |
| CO 5 | Text books |  |
| 1. NETZWERK Deutsch alsFremdsprache A1(Goyal, New Delhi, 2015) |  |  |
| 2. Lagune 1 |  |  |
| 3. Schulz-Griesbach: Deutsch alsFremdsprache. Grundstufe in einem Band (for Grammar) |  |  |
| Online Practice Material |  |  |
| 1. https://www.goethe.de/en/spr/kup/prf/prf/sd1/ueb.html |  |  |
| 2. http://www.deutschkurse.passau.de/JM/images/stories/SKRIPTEN/a1_skript_gr.pdf |  |  |
| 3. https://www.schubert-verlag.de/aufgaben/arbeitsblaetter_a1_z/al_arbeitsblaetter_index_z.htm |  |  |


| B.TECH FIRST YEAR (Foreign Language) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Course Code | AASL0204 |  |  | T | Credit |
| Course Title | Japanese |  | 20 | 00 | 2 |
| Course objective: |  |  |  |  |  |
| 1 | An introduction to Japanese language and culture. Students will learn to understand and articulate in day to day real-life situations. |  |  |  |  |
| 2 | The course provides a foundation in the four basic skills LSRW (Listening, Speaking, Reading, and Writing) of language learning. |  |  |  |  |
| Pre-requisites: <br> The student should be able to communicate in basic English. <br> The student should be keen to learn the language. |  |  |  |  |  |
| Course Contents / Syllabus |  |  |  |  |  |
| UNIT-I |  | Introduction to Japanese |  |  |  |

Introduction to Japanese alphabet（Hirangana），phonetics and pronunciation．
－Introducing ourselves and others，
－Introduction to Japanese Language
－Types of Japanese scripts－HIRANGANA，KATAKANA，
－Basic pronunciation rules
－Time and numbers－telling and asking the time，counting cardinal numbers，
－Grammar－different types of verbs，nouns－number \＆gender，pronouns，present and simple past tense．

\section*{| UNIT－II | Vocabulary building | 8 Hours |
| :--- | :--- | :--- |}

Use simple sentences to answer basic personal questions
－Expressing gratitude
－Invitations
－Talking about plans
－Holidays
－Hotels \＆restaurants
－Town \＆country
Word order－sentence，question，negative

\section*{| UNIT－III | Everyday common simple sentences 8 Hours |
| :--- | :--- | :--- |}

－Customer and shopkeeper
－Making a request
－Home／Relatives／Fruits／Vegetables／Animals
Grammar－Singular vs．Plural
Question formation

| UNIT－IV | Reading | 8 Hours |
| :--- | :--- | :--- |

－Transportation
－Week／Month names
－Shopping
Basic Japanese grammar rules－particles：か（ka），は（wa），の（no），と（to），を（o），に （ni），も（mo），が（ga），や（ya）．
Grammar－Present，Past，Future

| UNIT－V | Writing | 8 Hours |
| :---: | :---: | :---: |
| －Write short text on oneself |  |  |
| Grammar－Pronouns－subject，object，possessive， |  |  |

## Modal verbs

## Course outcome:

At the end of the course students will be able to

| CO1 | understand the basics of Japanese Language and its script. |
| :--- | :--- |
| CO2 | recognise the foundational vocabulary. |
| CO3 | use simple phrases in everyday conversations. |
| CO4 | read simple sentences. |
| CO5 | write simple sentences |
| Reren |  |

## References:

- https://www.youtube.com/watch?v=6p9II iOzic\&ab channel=LearnJapanesewithJapanesePod101.com
- https://books.google.co.in/books?
id=4nHnMa4ZwMC\&newbks=0\&printsec=frontcover\&dqminna+no+nihongo\&hl=en\&source=newbks fb\& redir_esc=y\#v=onepage\&q=minna\%20no\%20nihongo\&f=false

| B. TECH FIRST YEAR |  |  |  |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: |
| Course Code | AAS0251B | L T P P | Credit |  |  |
| Course Title | Engineering Physics Lab | $\mathbf{0}$ 0 | $\mathbf{2}$ | $\mathbf{1}$ |  |
|  |  |  |  |  |  |
| Sr. <br> No. | Name of Experiment <br> (Minimum Ten experiments should be performed) |  |  |  |  |
| $\mathbf{1}$ | To determine the wavelength of monochromatic light by Newton's ring. |  |  |  |  |
| $\mathbf{2}$ | To determine the focal length of two lenses by nodal slide and to verify the formula for the <br> focal length of combination of two lenses. |  |  |  |  |
| $\mathbf{3}$ | To determine the specific rotation of cane sugar solution using Polarimeter. |  |  |  |  |
| $\mathbf{4}$ | To determine the wavelength of spectral lines using plane transmission Grating. |  |  |  |  |
| $\mathbf{5}$ | To determine the specific resistance of a given wire using Carey Foster's bridge. |  |  |  |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| 6 | To study the variation of magnetic field along the axis of current carrying - Circular coil and then to estimate the radius of the coil. |
| :---: | :---: |
| 7 | To verify Stefan's Law by electrical method. |
| 8 | To Study the Hall effect and determine the Hall Coefficient, carrier density and mobility of a given semiconductor material using hall effect setup. |
| 9 | To determine the energy band gap of a given semiconductor material. |
| 10 | To determine the coefficient of viscosity of a liquid. |
| 11 | Calibration of a voltmeter using potentiometer. |
| 12 | Calibration of a ammeter using potentiometer. |
| 13 | To determine E.C.E. of copper using Tangent or Helmholtz galvanometer. |
| 14 | To determine the magnetic susceptibility of a ferromagnetic salt $\left(\mathrm{FeCl}_{3}\right)$ by using Quincke's tube method. |
| 15 | To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material. |
| 16 | To determine the angle of divergence of laser beam using He-Ne Laser. |
| 17 | To determine the wavelength of laser using diffraction grating. |
| 18 | To determine the numerical aperture of optical fiber. |
| Lab Course Outcome: After completion of this course students willbeable to: |  |
| CO 1 | Apply the practical knowledge of the phenomenon of interference, diffraction and polarization. |
| CO 2 | Understand energy band gap and resistivity. |
| CO 3 | Develop the measurement techniques of magnetism. |
| CO 4 | Analyze the flow of liquids. |
| Link: |  |
| Unit 1 | https://www.youtube.com/watch?v=lzBKIY4f1XA\&list=PL10WTjZXSIIHKMnU4UCxpPsHyAf_n1O6\&index=11 |
| Unit 2 | http://nptel.ac.in/ , http://www.mit.edu/ |
| Unit 3 | https://www.youtube.com/watch?v=bWTxf5dSUBE , http://ocw.mit.edu/ |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

|  | http://nptel.ac.in/ |
| :--- | :--- |
| Unit 4 | https://www.youtube.com/watch?v=6vyYRnLvnqI |
| Unit 5 | https://www.youtube.com/watch?v=0GD-18Jqnro, <br> https://www.youtube.com/watch?v=dQhhcgn8YZo |



L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

|  | using CRO. |  |
| :--- | :--- | :---: |
| $\mathbf{1 3}$ | To design and perform Adder and Subtractor circuit using Op-Amp. | 5 |
| $\mathbf{1 4}$ | To understand the concept of Wireless Home Automation System based on IoT <br> for controlling lights and fans. | 5 |
| $\mathbf{1 5}$ | To calculate and draw different electrical parameter using MATLAB/Simulink for <br> a circuit. | 1,4 |
| $\mathbf{1 6}$ | Energy audit of labs and rooms of different blocks. | 3 |
| Lab Course Outcome: After successful completion of this course students will be able to: |  |  |
| CO 1 | Apply the principle of KVL/KCL and theorem to analysis DC Electric circuits. |  |
| CO 2 | Demonstrate the behavior of AC circuits connected to single phase AC supply and measure <br> power in single phase as well as three phase electrical circuits. |  |
| CO 3 | Calculate efficiency of a single phase transformer and energy consumption. |  |
| CO 4 | Understand the concept and applications of diode, Op-Amp,sensors and IoT. |  |

## NPTEL/ YouTube/ Faculty Video Link:

1. Virtual Lab Website"http://www.vlab.co.in/

| B. TECH FIRST YEAR |  |  |  |
| :---: | :---: | :---: | :---: |
| Lab Code |  | ACSE0251 | Credit |
| Lab Title |  | Programming | 1 |
| Course outcome: At the end of course, the student will be able to |  |  |  |
| CO 1 | Write programs for arithmetic and logical problems. |  | $\mathrm{K}_{1}, \mathrm{~K}_{3}$ |
| CO 2 | write programs for conditional branching, iteration and recursion |  | $\mathrm{K}_{2}, \mathrm{~K}_{3}$ |
| CO 3 | Write programs using functions and synthesize a complete program using divide and conquer approach |  | K4 |
| CO 4 | write programs using arrays, pointers and structures |  | $\mathrm{K}_{3}, \mathrm{~K}_{4}$ |
| CO 5 | Write programs to perform input/output operations on files |  | $\mathrm{K}_{3}, \mathrm{~K}_{4}$ |

## List of Experiment:

\section*{| S.No. | Fundamental Experiments |
| :--- | :--- |}

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| 1. | WAP that calculate the simple interest and compound interest when principal, rate of interest and time are given. |
| :---: | :---: |
| 2. | WAP that swaps values of two variables using a third variable and without using third variable |
| 3. | WAP to compute the roots of quadratic equations. |
| 4. | WAP that accepts the marks of 5 subjects and finds the percentage marks obtained by the student.It also prints grades according to the following criteria: <br> Between 90-100\%-----------Print 'A' <br> 80-90\%-------------------------Print 'B' <br> 60-80\%--------------------------Print 'C' <br> Below 60\%--------------------Print 'D' |
| 5. | WAP to simulate the calculator (Arithmetic operations: +, -, /, *). |
| 6. | Write a menu driven program that computes the area of geometrical figures such as rectangle, square, circle and triangle. |
| 7. | WAP to find the factorial of a given number. |
| 8. | WAP to print the Fibonacci series. |
| 9. | WAP to check whether the entered number is prime or not. |
| 10. | WAP to convert the binary number to decimal number and vice versa |
| 11. | WAP to print allArmstrong numbers from 1 to N . |
|  | Arrays |
| 12. | WAP to find the minimum and maximum element of the array. |
| 13. | WAP to search an element in an array using Linear Search. |
| 14. | Write programs to sort the elements of the array in ascending order using Bubble Sort technique. |
| 15. | WAP to compute the multiplication of two matrices. |
|  | Pointers and Functions |
| 16. | WAP to swap the values of two numbers using the call by pointer. |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| $\mathbf{1 7}$ | WAP to compute the factorial of the number using the recursive function factorial (). |
| ---: | :--- |
| $\mathbf{1 8 .}$ | WAP to compute the length of the string using the user defined function xstrlen(). |
| $\mathbf{1 9 .}$ | WAP to concatenate two strings using the user defined function xstrcat(). |
| $\mathbf{2 0 .}$ | Strings and Structures |
| $\mathbf{2 1 .}$ | WAP to reverse the string. Also check whether the given string is in palindrome or not. <br> create an array of structure of 50 students and display the detail of all the students having <br> marks more than 70. |
| $\mathbf{2 2 .}$ | WAP to copy the contents of one file onto another file. |
| $\mathbf{2 3 .}$ | WAP to compare the contents of two files and determine whether they are same or not. |
| $\mathbf{2 4 .}$ | WAP to check whether the given word exist in a file or not. If yes, then find the number of <br> times it occurs. |
| 25. | WAP to create an array using dynamic memory allocation. |
| $\mathbf{2 6 .}$ | Installation and working with Keil. |
| $\mathbf{2 7}$ | Implement Intruder alarm system. |



| UNIT-III | Projection of solids and Sections of solids and Development of surfaces | 6 hours |
| :---: | :---: | :---: |
| Orthographic projections of regular solids. Projection of section of regular solids. Development of lateral surfaces of regular solids(2sheet) |  |  |
| UNIT-IV | Introduction to CAD | 9 hours |
| Introduction to Computer Aided Drawing: Drawing practice using various commands (Array, block, scale, fillet, chamfer, hatch etc.), Absolute coordinate systems, Polar coordinate systems and relative coordinate systems, Drawing practice using dimensioning, Drawing of 2D planes; circle, polygons, ellipse etc, Drawing practice using 3D primitives; Drawing of cone Prism, pyramid etc.; Create solids using extrude, revolve commands, Working drawings of various mechanical systems. (4 Sheets) |  |  |
| UNIT-V | Introduction to CREO | 9 hours |
| Introduction to CREO Parametric, features of CREO, concepts- modeling, parametric, associative, feature based, sketch entities- inference lines, center lines, circle, arc, ellipse, rectangle, slots, polygon, etc, sketch tools- fillet, chamfer, offset, trim, extend, split, mirror, move, copy, rotate, scale, stretch etc. dimensioning (4 Sheets) |  |  |
| Course outcome: After completion of this course students will be able to |  |  |
| CO 1 | Apply the basic principles of engineering graphics to draw various types of Scales, Cycloidal and involutes curves. | $\mathrm{K}_{1}, \mathrm{~K}_{2}$ |
| CO 2 | Draw and develop the projections of points lines and planes. | $\mathrm{K}_{1}, \mathrm{~K}_{2}$ |
| CO 3 | Draw orthographic projection of solids and their sections and draw the lateral surfaces. | $\mathrm{K}_{3}$ |
| CO 4 | Apply CAD software to draw 2D and 3D drawing. | $\mathrm{K}_{2}$ |
| CO 5 | Apply CREO software to draw 2D and 3D drawing. | $\mathrm{K}_{2}, \mathrm{~K}_{3}$ |
| Text books |  |  |
| A Textbook of Engineering Drawing- Dr R.K. Dhawan, S.Chand Publication, Revised edition2015 |  |  |
| Engineering Graphics and Design- P.S. Gill, Katson books, Revised edition-2018 |  |  |
| Reference Books |  |  |
| (1) Engineering Drawing - N.D. Bhatt \& V.M. Panchal, 48thedition, 2005- Charotar Publishing House, Gujarat. |  |  |
| (2) Computer Aided Engineering Drawing - S. Trymbaka Murthy, - I.K. International Publishing House Pvt. Ltd., New Delhi, ${ }^{\text {rirevised }}$ edition-2006 |  |  |
| Video links |  |  |
| Unit 1 |  |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

|  | https://www.youtube.com/watch?v=uojN7SOHPBw <br> https://youtu.be/w2-a_EzO4-Q <br> https://www.youtube.com/watch?v=n9iQcttWHAo |
| :---: | :---: |
|  | Unit 2 <br> https://www.youtube.com/watch?v=fK4h5gM73w8\&list=PLIhUrsYr8yHxEk_Jv8yOatnDcr6KYK3j <br> https://www.youtube.com/watch? <br> $\underline{v=F t u g L o 9 D M w 8 \& l i s t=P L I h U r s Y r 8 y H z ~ F k G 5 t G W X a N b I x V c i b O v V ~}$ <br> https://www.youtube.com/watch? <br> $\mathrm{v}=$ AoNIOxnxDO0\&list=PLIhUrsYr8yHx7TVB51jN3HZVyW3R6RiBg |
|  | Unit 3 <br> https://www.youtube.com/watch? <br> $\mathrm{v}=\mathrm{YV} 4 R Z N Q 2 \mathrm{yB} 8 \& \mathrm{list}=\mathrm{PLIhUrsYr8yHxARPzEFz} \ln X g t 8 j 6 x F$ tEm <br> https://www.youtube.com/watch? <br> $\mathrm{v}=\mathrm{vlYAGkWmiW8} \mathrm{\& list=PLIhUrsYr8yHwdB96ft6c0Uwc4SDCLuG1v} \mathrm{\& index=5}$ <br> https://www.youtube.com/watch? <br> $\mathrm{v}=\mathrm{Vo} 9 \mathrm{LC} 9 \mathrm{~d} 7 \mathrm{FQA} \& l i s t=$ PLIhUrsYr8yHxVky7bfrnbRcdXcHjT_K83\&index=1 <br> youtube.com/watch? $\mathrm{v}=\mathrm{t} 9 \mathrm{gep}$ Mkey0w\&list=PLItCiRV7ABU4SUL7gYOSiwmMIN1t - <br> gQ1\&index=2 |
|  | Unit 4 <br> https://www.youtube.com/watch?v=ifM0JQ6-Nus <br> https://www.youtube.com/watch?v=tHrfxjgFQt8 <br> https://www.youtube.com/watch? $\mathrm{v}=\mathrm{c} 1 \mathrm{kGuiYEHh} 0$ <br> https://www.youtube.com/watch?v=UKpCFYWK7q4\&t=14s <br> https://www.youtube.com/watch?v=R8Hd7DUZcF0 <br> https://www.youtube.com/watch? v=rzXWDgfcxec <br> https://www.youtube.com/watch? $\mathrm{v}=\mathrm{QnN8A1mIUYY}$ <br> https://www.youtube.com/watch?v=Gx3yy51KumA <br> https://www.youtube.com/watch?v=tnylweRokkw |
|  | Unit 5 <br> https://www.youtube.com/watch?v=sVWsUS 7V6s <br> https://www.youtube.com/watch?v=KsMil9ND5E8 <br> https://www.youtube.com/watch?v=GGxmUWBoqcg |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| B. TECH FIRST YEAR |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Course Code | AME0252 |  | LT P | Credit |
| Course Title | Engineering Graphics \& Solid Modelling |  | 003 | 1.5 |
| Suggested list of Experiment |  |  |  |  |
| Sheet No. | Experiment No. | Name of Experiment |  |  |
| 1. | 1 | To draw plain scale and diagonal scale. |  |  |
| 2. | 1 | To draw projection of points, lines and planes. |  |  |
| 3. | 1 | To draw orthographic projection of regular solids. |  |  |
|  | 2 | To draw section of regular solids. |  |  |
| 4. | 1 | To draw development of lateral surfaces of simple solids. |  |  |
|  | 2 | To draw cycloidal or involute curve. |  |  |
| 5. | 1 | Initiating the Graphics Package; Setting the paper size, space; setting the limits, units; use of snap and grid commands in AutoCAD |  |  |
| 6. | 1 | To create 2D view of a center pin with given dimensions in AutoCAD. |  |  |
|  | 2 | To create 2D view of abase plate with given dimensions in AutoCAD. |  |  |
|  | 3 | To create 2D view of a bush with given dimensions in AutoCAD. |  |  |
| 7. | 1 | To create 3D view of a washer in AutoCAD. |  |  |
|  | 2 | To create 3D view of a guide pin in AutoCAD. |  |  |
|  | 3 | To create 3D view of a lock nut in AutoCAD. |  |  |
| 8. | 1 | To create drawings of given machine components in |  |  |

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

|  |  | AutoCAD. |
| :--- | :--- | :--- |
| 9. | $\mathbf{1}$ | To understand basic of CREO |
|  | $\mathbf{2}$ | $\mathbf{T}$ |
| $\mathbf{1 0 .}$ | $\mathbf{1}$ | To understand basic sketching in CREO <br> options aiding constructions like extrude, hole, ribs, shell etc. |
| $\mathbf{1 1 .}$ | $\mathbf{1}$ | Introduction to CREO Parametric 'sketch features' (revolve, <br> sweep, helical sweep, sweep blend etc. |
| $\mathbf{1 2 .}$ | Introduction to CREO Parametric 'edit features' (group, <br> copy, mirror tool) and 'place features' (holes, shells and <br> drafts). |  |

